Line interference effects using a refined Robert-Bonamy formalism: the test case of the isotropic Raman spectra of autoperturbed N2.
نویسندگان
چکیده
A symmetrized version of the recently developed refined Robert-Bonamy formalism [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] is proposed. This model takes into account line coupling effects and hence allows the calculation of the off-diagonal elements of the relaxation matrix, without neglecting the rotational structure of the perturbing molecule. The formalism is applied to the isotropic Raman spectra of autoperturbed N2 for which a benchmark quantum relaxation matrix has recently been proposed. The consequences of the classical path approximation are carefully analyzed. Methods correcting for effects of inelasticity are considered. While in the right direction, these corrections appear to be too crude to provide off diagonal elements which would yield, via the sum rule, diagonal elements in good agreement with the quantum results. In order to overcome this difficulty, a re-normalization procedure is applied, which ensures that the off-diagonal elements do lead to the exact quantum diagonal elements. The agreement between the (re-normalized) semi-classical and quantum relaxation matrices is excellent, at least for the Raman spectra of N2, opening the way to the analysis of more complex molecular systems.
منابع مشابه
Line mixing effects in isotropic Raman spectra of pure N2: a classical trajectory study.
Line mixing effects in the Q branch of pure N2 isotropic Raman scattering are studied at room temperature using a classical trajectory method. It is the first study using an extended modified version of Gordon's classical theory of impact broadening and shift of rovibrational lines. The whole relaxation matrix is calculated using an exact 3D classical trajectory method for binary collisions of ...
متن کاملLine mixing in parallel and perpendicular bands of CO2: A further test of the refined Robert-Bonamy formalism.
Starting from the refined Robert-Bonamy formalism [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)], we propose here an extension of line mixing studies to infrared absorptions of linear polyatomic molecules having stretching and bending modes. The present formalism does not neglect the internal degrees of freedom of the perturbing molecules, contrary to the energy correc...
متن کاملModified complex Robert–Bonamy formalism calculations for strong to weak interacting systems
In 1979 Robert and Bonamy published a complex formalism (CRB) for the calculations of the 10 pressure broadened half-width and collision-induced line shifts [J. Phys. Paris 40, 923 (1979)]. Application of the linked cluster theorem produced expressions that no longer needed the cut-off procedure that plagued earlier line shape theories. Recently, Ma, Tipping and Boulet (MTB) suggested that the ...
متن کاملOptimal Feature Extraction for Discriminating Raman Spectra of Different Skin Samples using Statistical Methods and Genetic Algorithm
Introduction: Raman spectroscopy, that is a spectroscopic technique based on inelastic scattering of monochromatic light, can provide valuable information about molecular vibrations, so using this technique we can study molecular changes in a sample. Material and Methods: In this research, 153 Raman spectra obtained from normal and dried skin samples. Baseline and electrical noise were eliminat...
متن کاملFormaldehyde around 3.5 and 5.7-μm: measurement and calculation of broadening coefficients
Selfand N2-broadening coefficients of H2CO have been retrieved in both the 3.5 and 5.7-μm spectral regions. These coefficients have been measured in FT spectra for transitions with various J (from 0 to 25) and K values (from 0 to 10), showing a clear dependence with both rotational quantum numbers J and K. First, an empirical model is presented to reproduce the rotational dependence of the meas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 140 8 شماره
صفحات -
تاریخ انتشار 2014